清明上河图代码,我们如何通过
384
2023-10-25
清明上河图宽24.8厘米、长528.7厘米 ,绢本设色 。作品以长卷 形式,采用散点透视 构图法,生动记录了中国十二世纪北宋 都城东京(又称汴京 ,今河南开封 )的城市面貌和当时社会各阶层人民的生活状况,是北宋时期都城汴京当年繁荣的见证,也是北宋城市经济情况的写照。
这在中国乃至世界绘画史上都是独一无二的。在五米多长的画卷里,共绘了数量庞大的各色人物,牛、骡、驴等牲畜,车、轿、大小船只,房屋、桥梁、城楼 等各有特色,体现了宋代建筑的特征。具有很高的历史价值和艺术价值。《清明上河图》虽然场面热闹,但表现的并非繁荣市景,而是一幅带有忧患意识的"盛世危图",官兵懒散税务重。
而我们今天的项目就是通过对算法的改造,实现属于自己的清明上河图。
下面我们将利用vgg19模型训练画作,详细步骤如下,并且我在每个代码上面都注释了方便查看:
首先我们导入先关的库:
import tensorflow as tf
import numpy as np
import scipy.io
import scipy.misc
import os
import time
接着定义一些变量方便调用:CONTENT_IMG = '1.png'
STYLE_IMG = 'sty.jpg'
OUTPUT_DIR = 'neural_style_transfer_tensorflow/'
再创建一个目录用来保存图片:
if not os.path.exists(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
定义生成图像的长宽通道等信息:
IMAGE_W = 400
IMAGE_H = 300
COLOR_C = 3
NOISE_RATIO = 0.7
BETA = 5
ALPHA = 100
再接着定义模型路径
VGG_MODEL = 'imagenet-vgg-verydeep-19.mat'
生成一个参数矩阵,作为图像的处理过程之一,对像素值运算:
MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
再 接着定义读取模型函数,下面我都有所注解:
def load_vgg_model(path):
'''
Details of the VGG19 model:
- 0 is conv1_1 (3, 3, 3, 64)
- 1 is relu
- 2 is conv1_2 (3, 3, 64, 64)
- 3 is relu
- 4 is maxpool
- 5 is conv2_1 (3, 3, 64, 128)
- 6 is relu
- 7 is conv2_2 (3, 3, 128, 128)
- 8 is relu
- 9 is maxpool
- 10 is conv3_1 (3, 3, 128, 256)
- 11 is relu
- 12 is conv3_2 (3, 3, 256, 256)
- 13 is relu
- 14 is conv3_3 (3, 3, 256, 256)
- 15 is relu
- 16 is conv3_4 (3, 3, 256, 256)
- 17 is relu
- 18 is maxpool
- 19 is conv4_1 (3, 3, 256, 512)
- 20 is relu
- 21 is conv4_2 (3, 3, 512, 512)
- 22 is relu
- 23 is conv4_3 (3, 3, 512, 512)
- 24 is relu
- 25 is conv4_4 (3, 3, 512, 512)
- 26 is relu
- 27 is maxpool
- 28 is conv5_1 (3, 3, 512, 512)
- 29 is relu
- 30 is conv5_2 (3, 3, 512, 512)
- 31 is relu
- 32 is conv5_3 (3, 3, 512, 512)
- 33 is relu
- 34 is conv5_4 (3, 3, 512, 512)
- 35 is relu
- 36 is maxpool
- 37 is fullyconnected (7, 7, 512, 4096)
- 38 is relu
- 39 is fullyconnected (1, 1, 4096, 4096)
- 40 is relu
- 41 is fullyconnected (1, 1, 4096, 1000)
- 42 is softmax
'''
vgg = scipy.io.loadmat(path)
vgg_layers = vgg['layers']
#加载vgg模型获取模型各层参数和名称
def _weights(layer, expected_layer_name):
W = vgg_layers[0][layer][0][0][2][0][0]
b = vgg_layers[0][layer][0][0][2][0][1]
layer_name = vgg_layers[0][layer][0][0][0][0]
assert layer_name == expected_layer_name
return W, b
#将加载的变量初始化成tf可运算的张量类型,函数返回值为激活函数的输出
def _conv2d_relu(prev_layer, layer, layer_name):
W, b = _weights(layer, layer_name)
W = tf.constant(W)
b = tf.constant(np.reshape(b, (b.size)))
return tf.nn.relu(tf.nn.conv2d(prev_layer, filter=W, strides=[1, 1, 1, 1], padding='SAME') + b)
#定义池化层函数
def _avgpool(prev_layer):
return tf.nn.avg_pool(prev_layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#将各层输出值都放到列表中方便加载,形成字典
graph = {}
graph['input'] = tf.Variable(np.zeros((1, IMAGE_H, IMAGE_W, COLOR_C)), dtype='float32')
#定义['conv1_1']为vgg模型的第0层,输入层为上一层的['input' ]
graph['conv1_1'] = _conv2d_relu(graph['input'], 0, 'conv1_1')
graph['conv1_2'] = _conv2d_relu(graph['conv1_1'], 2, 'conv1_2')
graph['avgpool1'] = _avgpool(graph['conv1_2'])
graph['conv2_1'] = _conv2d_relu(graph['avgpool1'], 5, 'conv2_1')
graph['conv2_2'] = _conv2d_relu(graph['conv2_1'], 7, 'conv2_2')
graph['avgpool2'] = _avgpool(graph['conv2_2'])
graph['conv3_1'] = _conv2d_relu(graph['avgpool2'], 10, 'conv3_1')
graph['conv3_2'] = _conv2d_relu(graph['conv3_1'], 12, 'conv3_2')
graph['conv3_3'] = _conv2d_relu(graph['conv3_2'], 14, 'conv3_3')
graph['conv3_4'] = _conv2d_relu(graph['conv3_3'], 16, 'conv3_4')
graph['avgpool3'] = _avgpool(graph['conv3_4'])
graph['conv4_1'] = _conv2d_relu(graph['avgpool3'], 19, 'conv4_1')
graph['conv4_2'] = _conv2d_relu(graph['conv4_1'], 21, 'conv4_2')
graph['conv4_3'] = _conv2d_relu(graph['conv4_2'], 23, 'conv4_3')
graph['conv4_4'] = _conv2d_relu(graph['conv4_3'], 25, 'conv4_4')
graph['avgpool4'] = _avgpool(graph['conv4_4'])
graph['conv5_1'] = _conv2d_relu(graph['avgpool4'], 28, 'conv5_1')
graph['conv5_2'] = _conv2d_relu(graph['conv5_1'], 30, 'conv5_2')
graph['conv5_3'] = _conv2d_relu(graph['conv5_2'], 32, 'conv5_3')
graph['conv5_4'] = _conv2d_relu(graph['conv5_3'], 34, 'conv5_4')
graph['avgpool5'] = _avgpool(graph['conv5_4'])
return graph
为了实现自己的项目效果,设定损失函数:
#定义内容损失函数,变量为tf计算图和vgg模型参数,返回值为损失值
def content_loss_func(sess, model):
#p就是model['conv4_2'])参数,x是model['conv4_2'])
def _content_loss(p, x):
#p的值为Tensor("Relu_9:0", shape=(1, 75, 100, 512), dtype=float32),故N为512,M为75*100,分别为卷积核个数,卷积核大小的宽*100
N = p.shape[3]
M = p.shape[1] * p.shape[2]
return (1 / (4 * N * M)) * tf.reduce_sum(tf.pow(x - p, 2))
return _content_loss(sess.run(model['conv4_2']), model['conv4_2'])
STYLE_LAYERS = [('conv1_1', 0.5), ('conv2_1', 1.0), ('conv3_1', 1.5), ('conv4_1', 3.0), ('conv5_1', 4.0)]
#返回值为_style_loss的值*0.5,1,1.5,4的加和
def style_loss_func(sess, model):
def _gram_matrix(F, N, M):
Ft = tf.reshape(F, (M, N))
return tf.matmul(tf.transpose(Ft), Ft)
#a,x都为'conv1_1', conv2_1', 'conv3_1', 'conv4_1','conv5_1'中的参数遍历
def _style_loss(a, x):
#同内容损失函数
N = a.shape[3]
M = a.shape[1] * a.shape[2]
A = _gram_matrix(a, N, M)
G = _gram_matrix(x, N, M)
return (1 / (4 * N ** 2 * M ** 2)) * tf.reduce_sum(tf.pow(G - A, 2))
return sum([_style_loss(sess.run(model[layer_name]), model[layer_name]) * w for layer_name, w in STYLE_LAYERS])
再定义生成图片,读取图片,保存图片函数:
#产生噪声图片
def generate_noise_image(content_image, noise_ratio=NOISE_RATIO):
#随机产生矩阵图片,矩阵元素内容符合标准正太分布
noise_image = np.random.uniform(-20, 20, (1, IMAGE_H, IMAGE_W, COLOR_C)).astype('float32')
#将产生的矩阵内各元素与神经网络加和
input_image = noise_image * noise_ratio + content_image * (1 - noise_ratio)
return input_image
#读取图片,改变尺寸,变成1行多列矩阵,将矩阵与初始值相减返回
def load_image(path):
image = scipy.misc.imread(path)
image = scipy.misc.imresize(image, (IMAGE_H, IMAGE_W))
#image.shape为[800,600,3],则(1, ) + image.shape)为[1,800,600,3]
image = np.reshape(image, ((1, ) + image.shape))
#MEAN_VALUES = np.array([123.68, 116.779, 103.939]).reshape((1, 1, 1, 3))
#其中image为三通道矩阵,MEAN_VALUES为三维矩阵可以相减
image = image - MEAN_VALUES
return image
#保存图片
def save_image(path, image):
image = image + MEAN_VALUES
#参见上面图像加载时多加了1维,故形成时要减少维度,
image = image[0]
#截取所有数值在0-255之间的,因为像素值必须是这个范围。而参数运算后可能会超过这个值
image = np.clip(image, 0, 255).astype('uint8')
#保存
scipy.misc.imsave(path, image)
下面是训练加载:
#启动计算图
with tf.Session as sess:
#读取图片,返回值为减去MEAN_VALUES的矩阵,矩阵形状为[1,800,600,3]
content_image = load_image(CONTENT_IMG)
style_image = load_image(STYLE_IMG)
#加载vgg19模型,返回值为一个字典,里面为各网络层参数,输入和输出
model = load_vgg_model(VGG_MODEL)
#产生噪声图片,返回值为随机矩阵加上网络层参数的新矩阵
input_image = generate_noise_image(content_image)
#变量初始化
sess.run(tf.global_variables_initializer)
#从网络层input层开始运算内容图片矩阵
sess.run(model['input'].assign(content_image))
content_loss = content_loss_func(sess, model)
# 从网络层input层开始运算内容图片矩阵
sess.run(model['input'].assign(style_image))
style_loss = style_loss_func(sess, model)
#总损失为内容损失加上风格损失
total_loss = BETA * content_loss + ALPHA * style_loss
#建立优化器以调整参数
optimizer = tf.train.AdamOptimizer(2.0)
#优化器调整参数,使得损失为最小
train = optimizer.minimize(total_loss)
sess.run(tf.global_variables_initializer)
# 从网络层input层开始运算形成新的图片
sess.run(model['input'].assign(input_image))
ITERATIONS = 2000
#训练2000轮
for i in range(ITERATIONS):
sess.run(train)
print('Iteration %d' % i)
print('Cost: ', sess.run(total_loss))
if i % 100 == 0:
#每一百次加载一次网络参数以保存图片
output_image = sess.run(model['input'])
print('Iteration %d' % i)
print('Cost: ', sess.run(total_loss))
save_image(os.path.join(OUTPUT_DIR, 'output_%d.jpg' % i), output_image)
最终得到的效果如图所示:
左边是电视里找的图片,右边是模拟的图片,由此可见生成的效果还是可以的。而这个程序的主要思路就是在一个生成随机矩阵的基础上,通过加载网络层训练参数,然后生成的矩阵值按比例乘以网络参数,然后把矩阵保存为图片即可达到模拟生成的效果。而其中参数的调整是基于深层次网络提取的图像特征按公式运算,通过优化器优化参数,通过训练次数的增加,参数也在逐渐改善,最终形成自己需要的图片效果。
【来源:CSDN】
版权归原作者所有,向原创致敬
发表评论
暂时没有评论,来抢沙发吧~