来源头条作者:库课网校 总 要 求 考生应理解或了解《高等数学》中函数、极限、连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程以及《线性代数》的行列式、矩阵、向量、方程组的基本概念与基本理论;掌握上述各部分的基本方法.应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;能运用基本概念、基本理论和基本方法正确地推理证明,准确、简捷地计算;能综合运用所学知识分析并解决简单的实际问题。 本大纲对内容的要求由低到高,对概念和理论分为“了解”和“理解”两个层次;对方法和运算分为“会”、“掌握”和“熟练掌握”三个层次. 考试用时:120 分钟 考试范围及要求 一、函数、极限和连续 (一)函数 1.理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。会建立简单实际问题的函数关系式。 2.理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。 3.了解函数 y=ƒ( x)与其反函数 y=ƒ-1 (x)之间的关系(定义域、值域、图象),会求单调函数的反函数。 4.理解和掌握函数的四则运算与复合运算,熟练掌握复合函数的复合过程。 5.掌握基本初等函数及其简单性质、图象。 6.了解初等函数的概念及其性质。 (二)极限 1.理解极限的概念,会求数列极限及函数在一点处的左极限、右极限和极限,了解数列极限存在性定理以及函数在一点处极限存在的充分必要条件。 2.了解极限的有关性质,掌握极限的四则运算法则(包括数列极限与函数极限)。 3.熟练掌握用两个重要极限求极限的方法。 4.了解无穷小量、无穷大量的概念,掌握无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。 (三)连续 1.理解函数在一点连续与间断的概念,会判断简单函数(含分段函数)的连续性,理解函数在一点连续与极限存在的关系。 2.会求函数的间断点及确定其类型。 3.掌握闭区间上连续函数的性质,会运用零点定理证明方程根的存在性。 4.了解初等函数在其定义区间上连续,并会利用连续性求极限。 二、一元函数微分学 (一)导数与微分 1.理解导数的概念,了解导数的几何意义以及函数可导性与连续性之间的关系,会用定义判断函数的可导性。 2.会求曲线上一点处的切线方程与法线方程。 3.熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法,会求反函数的导数。 4.掌握隐函数以及由参数方程所确定的函数的求导方法,会使用对数求导法,会求分段函数的导数。 5.了解高阶导数的概念,会求初等函数的高阶导数。 6.理解函数的微分概念及微分的几何意义,掌握微分运算法则及一阶微分形式的不变性,了解可微与可导的关系,会求函数的微分。 (二)中值定理及导数的应用 1.了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。3.了解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。 4.熟练掌握牛顿—莱布尼茨公式。 5.掌握定积分的换元积分法与分部积分法。并会证明一些简单的积分恒等式。 6.理解无穷区间广义积分的概念,掌握其计算方法。 7.掌握直角坐标系下用定积分计算平面图形的面积会求平面图形绕坐标轴旋转所生成的旋转体体积。 四、向量代数与空间解析几何 (一)向量代数 1.理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。 2.掌握向量的线性运算、向量的数量积以及两向量的向量积的计算方法。 3.了解两向量平行、垂直的条件。 (二)平面与直线 1.会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。 2.会求点到平面的距离。 3.了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。 4.会判定直线与平面间的关系(垂直、平行、直线在平面 2.掌握矩阵的线性运算、乘法、转置、方阵乘积的行列式及它们的运算规律。 3.理解逆矩阵的概念,掌握矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆矩阵。 4.掌握矩阵的初等变换,了解矩阵秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。 (三) 向量 1.了解 n 维向量的概念,向量的线性组合与线性表示。 2.理解向量组线性相关与线性无关的定义,掌握判别向量组线性相关性的方法. 3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组和秩。 (四) 线性方程组 1.掌握克莱姆法则。 2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件。 3.了解齐次线性方程组的基础解系、通解的概念. 4.了解非齐次线性方程组解的结构及通解的概念. 5.掌握用行初等变换求线性方程组通解的方法.
暂时没有评论,来抢沙发吧~